Quivers with subadditive labelings: classification and integrability

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Signed Quivers, Symmetric Quivers, and Root Systems.

We define a special sort of weighted oriented graphs, signed quivers. Each of these yields a symmetric quiver, i.e., a quiver endowed with an involutive anti-automorphism and the inherited signs. We develop a representation theory of symmetric quivers, in particular we describe the indecom-posable symmetric representations. Their dimensions constitute root systems corresponding to certain symme...

متن کامل

Kingman's Subadditive Ergodic Theorem Kingman's Subadditive Ergodic Theorem

A simple proof of Kingman’s subadditive ergodic theorem is developed from a point of view which is conceptually algorithmic and which does not rely on either a maximal inequality or a combinatorial Riesz lemma.

متن کامل

Subadditive Ergodic Theorems

Above is the famous Fekete’s lemma which demonstrates that the ratio of subadditive sequence (an) to n tends to a limit as n approaches infinity. This lemma is quite crucial in the field of subadditive ergodic theorems because it gives mathematicians some general ideas and guidelines in the non-random setting and leads to analogous discovery in the random setting. Kingman’s Subadditive Ergodic ...

متن کامل

The Hamiltonian approach in classification and integrability of hydrodynamic chains

New approach in classification of integrable hydrodynamic chains is established. This is the method of the Hamiltonian hydrodynamic reductions. Simultaneously, this approach yields explicit Hamiltonian hydrodynamic reductions of the Hamiltonian hydrodynamic chains. The concept of reducible Poisson brackets is established. Also this approach is useful for non-Hamiltonian hydrodynamic chains. The...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematische Zeitschrift

سال: 2019

ISSN: 0025-5874,1432-1823

DOI: 10.1007/s00209-019-02374-x